Performance Characterization of a Molecular Dynamics Code on PC Clusters: Is There Any Easy Parallelism in CHARMM?

نویسندگان

  • Michela Taufer
  • Egon Perathoner
  • Andrea Cavalli
  • Amedeo Caflisch
  • Thomas Stricker
چکیده

The molecular dynamics code CHARMM is a popular research tool for computational biology. An increasing number of researchers are currently looking for affordable and adequate platforms to execute CHARMM or similar codes. To address this need, we analyze the resource requirements of a CHARMM molecular dynamics simulation on PC clusters with a particle mesh Ewald (PME) treatment of longrange electrostatics, and investigate the scalability of the short-range interactions and PME separately. We look at the workload characterization and the performance gain of CHARMM with different network technologies and different software infrastructures and show that the performance depends more on the software infrastructures than on the hardware components. In the present study, powerful communication systems like Myrinet deliver performance that comes close to the MPP supercomputers of the past decade (e.g. Cray T3D), but improved scalability can also be achieved with better communication system software like SCore without the additional hardware cost. The experimental method of workload characterization presented can be easily applied to other codes. The detailed performance figures of the breakdown of the calculation into computation, communication and synchronization allow to derive good estimates about the benefits of moving applications to novel computing platforms such as widely distributed computers (grid).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation and Characterization of Protein Folding on a Desktop Computational Grid

CHARMM is a popular molecular dynamics code for computational biology. For many CHARMM applications such as protein folding, desktop grids could become viable alternatives to clusters of PCs. In this technical report, we present a prototype and discuss the viability of a protein folding application with CHARMM on the United Devices MetaProcessor, a platform for widely distributed computing. We ...

متن کامل

Implementation and Characterization of Protein Folding on a Desktop Computational Grid - Is CHARMM a Suitable Candidate for the United Devices MetaProcessor?

CHARMM is a popular molecular dynamics code for computational biology. For many CHARMM applications such as protein folding, desktop grids could become viable alternatives to clusters of PCs. In this paper, we present a prototype and discuss the viability of a protein folding application with CHARMM on the United Devices MetaProcessor, a platform for widely distributed computing. We identify th...

متن کامل

Molecular Dynamics Simulation of Water Transportation through Aquaporin-4 in Rat Brain Cells

This paper investigates the mechanism of water transportation through aquaporin-4(AQP4) of ratbrain cells by means of molecular dynamics simulation with CHARMM software. The AQP4 wasembedded into a bilayer made of Dimystroilphosphatylcholine (DMPC). The results illustrate thatwater molecules move through AQP4's channel with change of orientation of oxygen of eachwater molecule.

متن کامل

Planar Molecular Dynamics Simulation of Au Clusters in Pushing Process

Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...

متن کامل

ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale.

The high arithmetic performance and intrinsic parallelism of recent graphical processing units (GPUs) can offer a technological edge for molecular dynamics simulations. ACEMD is a production-class biomolecular dynamics (MD) engine supporting CHARMM and AMBER force fields. Designed specifically for GPUs it is able to achieve supercomputing scale performance of 40 ns/day for all-atom protein syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002